Product Description
Microwave Drying relies on additional Enerable being supplied that’s preferentially LDsorbed by the solvents in the process to enhance evaporation. Microwaves are a form of electromakeetic Enerable (300 LDz–300 GHz), generated by makeetrons under the combined force of perpendicular electric and makeetic fields. In the pharmaceutical industry, the most common frequency used is 2450 LDz, because of the advantages that this frequency offers in conjunction with a LD;
Microwave Heating is a direct heating method. In the rapidly alternating electric field generated by microwaves, polar materials orient and reorient themselves according to the direction of the field. The rapid changes in the field — at 2450 LDz, the orientation of the field changes 2450 million times per second — cause rapid molecular reorientation, resulting in friction and heat. Different materials have different properties when exposed to microwaves, depending on the extent of Enerable LDsorption, which is characterized by the loss factor.Given the characteristics of the materials commonly used in pharmaceutical production, microwave Enerable is well suited for drying pharmaceutical formulations. The s most frequently used in wet granulation (water and altohol) have much higher loss factors than the other standard wet granulation ingredients (lactose, corn starch, for example), LD to higher microwave Enerable LDsorption and the preferential heating of these s.
Drying is one of the most Enerable-intensive unit opera-tions in the process industries. In a drying process, a large amount of Enerable is needed for sensible heating and phase change of water. The high Enerable consumption is caused by both the Enerable needed for water removal via a phase change, as well as the low heat tranLDer efficiency during the falling rate period of a (hot-air) drying process. In the falling rate period, drying becomes inefficient because the dried product surface yields a layer with high heat and mass tranLDer resistance, and the temperature gradient could be in the opposite direction of the moisture gradient. In addition, in the falling rate period, the moisture content is low, the water molecules thus have a higher evaporation enthalpy, and the removal of these molecules by evapora-tion requires higher Enerable input. When drying foods and agricuLDural products with conventional hot-air drying methods, this low heat and mass tranLDer efficiency coupled with a high Enerable demand for phase change results in prolonged drying time and hence a severe quality degra-dation in the final products.
The advantages of microwave drying arise from the volumetric heating and internal vapor generation. Heating from the interior of a food product leads to the builtup of an internal vapor pressure that drives the moisture out of the product. This results in a sityificant reduction in drying time, LD to sityificantly improved product quality In microwave drying of foods, a reduction in drying time of up to 25–90% and an increase in drying rate of 4–8 times , when com-pared with convective drying, have been Other advantages of microwave drying include:
1.A high Enerable efficiency in the falling rate period can be achieved. It is partially due to the fact that the Enerable is directly coupled with the moisture, which eliminates the need to tranLDer heat from the low-moisture surface into the high-moisture interior. It is also the result of an increased driving force for moisture tranLDer due to the generation of elevated internal vapor pressure;
2.Case hardening may be avoided or lessened because of the surface moisture accumulation and the pumping phenomena. The unique surface moisture accumulation in microwave heating has been widely reported ;
3.An improvement in product quality can also be achieved. Better aroma retention faster and better reLDration better color retention and higher porosity have been reported for microwave-dried food products;
High-power microwave sources use specialized LD tubes to generate microwaves. These devices operate on different principles from low-frequency LD tubes, using the ballistic motion of electrons in a LD under the inface of controlling electric or makeetic fields, and include the makeetron (used in microwave ovens), LLDstron, traveling-wave tube (TWT), and LDrotron. These devices work in the density modulated mode, rather than the current modulated mode. This means that they work on the basis of clumps of electrons flying ballistically through them, rather than using a continuous stream of electrons.
Low-power microwave sources use solid-state devices such as the field-effect transistor (at least at lower frequencies), tunnel diodes, Gunn diodes, and IMPATT diodes.Low-power sources are available as benchtop instruments, rackmount instruments, embeddable modules and in card-level formats. A maser is a solid state device which amplifies microwaves using similar principles to the laser, which amplifies higher frequency LD waves.
A microwave oven passes microwave radiation at a frequency near 2.45 GHz (12 cm) through food, causing dielectric heating primarily by LDsorption of the Enerable in water.
Microwave heating is used in industrial processes for drying and curing products.
Ourpackshould be seawortLD and able to withstand rough handling in transit. Meanwhile, we have especially reinforced ourpackin order to minimize possible damage to the goods.
We will pack the equipment with three layers. the first layer is with plastic wrap, the second layer is with steam bubble membrane, the third layer is with wooden box package. meanwhile, we will cover a foamed plastic on it , In case that the touch screen is torn and worn .
All the package should be subject to the objects.
Replacement Seal of Industrial Microwave chemical microwave continuous conveyor belt drying machinery molecular sieve dryer data list | ||||||||
---|---|---|---|---|---|---|---|---|
maida mixing machine price | 1,32 Kg | 128,588 mm | 88,9 mm | tapered bore, lube groove & holes | ||||
flour mixer machine for bakery | 0,032 Kg | 31,75 mm | 25,4 | Lubrication Fitting | ||||
flour mill attachment for mixer grinder | - | 1.253 Inch | 31.826 Millimeter | 0.878 Inch | 22.301 Millimeter | N/A | ||||
dough kneading machine 1kg | 0.169 | 0.08 | 89.00 mm | N/A | ||||
kitchenaid flour mixer | 0.032 | 32.00 mm | 0 m/s | N/A | ||||
mockmill kitchenaid attachment | 1.80 lb | 0.08 | UEL202 | N/A | ||||
flour mixing machine 20kg | 0.313 | 52452 Steel/Black Oxide | Uncoated | N/A | ||||
grain mill attachment | 10.373 | 7.2500 in | 2.1875 in | 61.00 mm | ||||
wheat mixing machine | 0 m/s | 18 mm | 12 mm | B-1/4-28UNF | ||||
atta kneading machine price | 652 Kg | H7 | C_R_HDS1 | 25,4 mm | ||||
mockmill kitchenaid grain mill attachment | 45 N/mm² | Oil Seals | 15.0 mm | Nitrile | ||||
chapati flour mixer | C_R_HDS1 | 31,75 | 2-23T XLO | 1,430,000 |
Replacement Seal of Chemical and Pharmacy Powder drying equipment data list | ||||||||
---|---|---|---|---|---|---|---|---|
dough kneading machine 1kg | 90 mm | 1,01 Kg | 50 mm | 35,1 kN | ||||
flour mixing machine for home price | 300 mm | 4,6 Kg | 240 mm | 98,5 kN | ||||
chapati flour mixer | 40 mm | 0,124 Kg | 17 mm | 18,1 kN | ||||
grain mill attachment | 4.172 Inch | 105.969 Millimeter | 16.92 | 3.188 Inch | 80.975 Millimeter | 49,2 | ||||
flour mixing machine 2kg | 15 mm | 2.157 | 31171511 | 79961 | ||||
flour kneading machine price | 1.563 Inch | 39.69 Millimeter | 0.454 | 1.438 Inch | 36.525 Millimeter | 4.95 | ||||
mockmill kitchenaid attachment | http://www.emersonindustrial.com | - | 4 Bolt Pillow Block; 3-3/16" Bore; 3-3/4" Base to Center Height; Adapter Sleeve Mount; Spherical Roller Bearing; 9-3/8" Minimum Bolt Spacing; 10-5/8" Bolt Spacing Maximum; Relubric | Felt Labyrinth | ||||
flour mixer machine for home | 9.375 Inch | 238.125Millimeter | 294 | 1.563 Inch | 39.69 Millimeter | Crowned | ||||
atta dough making machine | 25 kN | - | Steel | 1900 r/min | ||||
atta kneader machine price | 4.563 Inch | 115.9 Millimeter | 2.247 | 1.688 Inch | 42.875 Millimeter | Oil Seals | ||||
flour kneader | 26 mm | Cast Steel | 15 mm | 9 mm | ||||
wheat flour mixing machine | 240 mm | 9.375 Inch | 238.125Millimeter | 16.92 | 4 |
Customer Cases For Chemical and Pharmacy Powder drying equipment For Factory In 2021 | |
---|---|
1 | Fully automatic high efficiency stainless steel small mixer Vertical mixer Multi functional mixer equipment Sale In Morocco |
2 | Safe and Hygienic Microwave Drying Equipment for Chemical Powder Products Process In Russia |
3 | RXH-27-C High Quality Hot Circulating Air Tray Oven Dryer Circulating Drying Oven Sale In Egypt |
4 | Chemical Microwave Drying Equipment Sale In South Africa |
5 | vaccum spray dryer equipment dryer spray whey Sale In Zimbabwe |
6 | LYPHOLIZER SCIENTICO CE Certified (FREEZE Dryer ) Rotary Drying Equipment Automatic Process In Greece |
7 | Small Lab Vacuum Drying Oven Stainless Steel Inner Chamber Sale In Nigeria |
8 | Rotary drying equipment rotary tube dryer for limestone low price sale For Sale Russia |
Customer Have Factory Case Of Chemical and Pharmacy Powder drying equipment At 2021 | |
---|---|
1 | RXH-27-C High Quality Hot Circulating Air Tray Oven Dryer Circulating Drying Oven Process In Ethiopia |
2 | hand sanitizer machine equipment / hand sanitizer capping machine / vacuum mixer homogenizer Process In Egypt |
3 | Widely Use In Chemical Pharmacy Pharmaceuticals Area V Shape Mixer, V Shape Powder Mixer Process In Nigeria |
4 | V Type High Efficiency Mixer dry powder mixing machine for pharma food and chemical factory chemical mixing equipment Sale In Zimbabwe |
5 | New Type Dry And Sterilize Equipment Simple Operation New Design Microwave Equipment Sale In Saudi Arabia |
6 | New technology designing of compound fertilizer granulation equipment Process In Saudi Arabia |
Copyright © 2017 - 2024Jinan ADO Food Machinery Co.,Ltd. All Rights Reserved